Short note

Systematics of related high-spin isomers in 144 Sm and other N = 82 nuclei

K. Jessen¹, M. Bergström², P. von Brentano¹, A. Dewald¹, B. Herskind², H. Meise¹, C. Schumacher¹, G. Sletten², O. Stuck¹, D. Weißhaar¹, I. Wiedenhöver¹, J. Wrzesinski²

¹ Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany

² Niels Bohr Institute, University of Copenhagen, DK-4000 Roskilde, Denmark

Received: 16 November 1997 and Communicated by P. Armbruster

Abstract. An in-beam experiment with the reaction ${}^{122}\text{Sn}({}^{27}\text{Al},4\text{np})$ at 127 MeV was performed at the NORDBALL multi-detector array in Roskilde. It provided evidence for a new high-spin isomer in ${}^{144}\text{Sm}$. This isomer with $T_{1/2} = (2.6 \pm 0.5)$ ns at an excitation energy $E_x = 9232$ keV seems to belong to a family of isomers of similar configuration in neighbouring N = 82 nuclei.

PACS. 21.10.Tg Lifetimes – 25.70.Gh Compound nucleus – 27.60.+j $90 \le A \le 149$

The existence of high-spin isomers (yrast traps) in the mass region around the quasi doubly magic nucleus ¹⁴⁶Gd had been predicted by Døssing et al. [1]. In N = 83 isotones such isomers had been found from ¹⁴⁴Pm to ¹⁵¹Er [2], and furthermore there had been reports on isomers in ¹⁴⁵Eu [3], ¹⁴⁶Gd [4], and ¹⁴⁷Tb [5]. Excitation energies, half lives, and spins of the latter ones are of the same order of magnitude, i.e. 8–9 MeV, a few ns, and $\approx 20\hbar$, so that another high-spin isomer might be found in the neighbouring ¹⁴⁴Sm.

In order to search the high-spin states of ¹⁴⁴Sm for isomers, we analysed an experiment performed with the NORDBALL spectrometer at the Niels Bohr Institute's Tandem Accelerator Laboratory in Roskilde. The chosen compound reaction ¹²²Sn(²⁷Al,4np)¹⁴⁴Sm was carried out at a beam energy of 127 MeV with a 95.8% enriched target of 1.5 mg/cm² on a 10 mg/cm² ¹⁸¹Ta backing. Altogether $6.8 \times 10^8 \gamma$ – γ -coincidence events were collected.

The NORDBALL array consists of 20 HPGe detectors surrounding an inner ball of 60 BaF₂ segments. The latter supplies a precise time reference signal given by the BaF₂ element that fires first. For any coincidence event the time differences between the reference signal and the Ge signals were recorded.

During the off-line analysis we set a gate on the characteristic 800 keV transition of ¹⁴⁴Sm, in order to separate the required data from other outgoing channels well. Subsequently 4.5×10^5 events were sorted into a gated energy-time matrix, which was scanned for isomers. For γ -ray transitions of interest cuts on the energy axis of our gated matrix were made, and resulting background-

Fig. 1. Centroid positions of the time distributions for $^{144}\rm{Sm}$ transitions above 8282 keV excitation energy. Crosses (×) denote positions belonging to prompt transitions, which give the zero-time line, and a quad () denotes the delayed one deexciting the isomeric level

subtracted time spectra were analysed by means of the centroid-shift method [6].

For the observed transitions we obtained three kinds of time distributions. With the use of the 144 Sm levelscheme given by E. Ott et al. [7] time centroids revealed the following results (Figs. 1 and 2):

Above an excitation energy of 8282 keV all transitions turned out to be prompt with the exception of the 950 keV transition, which is delayed providing evidence for a new high-spin isomer. Below the 8282 keV level the time

nucleus	$T_{1/2}$	excitation energy	possible configuration relative to $^{146}\mathrm{Gd}$	
144 Sm	2.6(5) ns	$9232 \ \mathrm{keV}$	$[\pi(h_{11/2}^2(d_{5/2}^{-4})_0),$	$ u(f_{7/2}i_{13/2}(d_{3/2}^{-2})_0)]_{20^{-1}}$
145 Eu	3.7(4) ns	$8528 \ \mathrm{keV}$	$[\pi(h_{11/2}^2(d_{5/2}^{-3})_{3/2}),$	$\nu(f_{7/2}i_{13/2}(d_{3/2}^{-2})_0)]_{43/2^-}$
^{146}Gd	4.3(2) ns	8915 keV	$[\pi(h_{11/2}^2(d_{5/2}^{-2})_0),$	$ u(f_{7/2}i_{13/2}(d_{3/2}^{-2})_0)]_{20^{-1}}$
$^{147}\mathrm{Tb}$	1.8(3) ns	$7763 \ \mathrm{keV}$	$[\pi(h_{11/2}^2d_{5/2}^{-1}),$	$\nu(f_{7/2}i_{13/2}(d_{3/2}^{-2})_0)]_{43/2^-}$

Table 1. Possible configurations for N = 82 high-spin isomers. The configuration of the Gd isomer was taken from [9]

Fig. 2. Partial high-spin level scheme of 144 Sm according to [7]. Dashed arrows denote transitions that could not be examined due to contaminations or low statistics

distributions exhibited both a prompt and a delayed part, because this level is fed by the prompt 1030 keV transition, which passes the isomer by. Thus, the isomeric level was located at an excitation energy of 9232 keV.

For a quantitative analysis of any centroid shift we had to find its relationship to a corresponding half-life $T_{1/2}$. Therefore we created a time-calibration by making use of well-known low-spin isomers belonging to by products of our reaction (see [3] for details). Hence follows, that the shift observed for the 950 keV transition gives a half life of

$$T_{1/2}(9232 \text{ keV}) = (2.6 \pm 0.5) \text{ ns}$$

E. Ott proposed spin assignments for some ¹⁴⁴Sm levels with excitation energies between 8.5 and 10.6 MeV [7]. She proposed a spin J of 18 or 20, which is comparable to the spin values for the isomers in the isotones ¹⁴⁵Eu, ¹⁴⁶Gd and ¹⁴⁷Tb, which have spins between $20\hbar$ and $43/2\hbar$ [4, 5, 8] and similar energies. Thus a systematic interpretation emerges. Unfortunately a definite parity assignments has been given only for the ¹⁴⁶Gd isomer, but as follows a proposal for the configurations of these isomers is given in analogy to the N = 83 isomers mentioned above:

The configuration of the 20^{-} isomer in ¹⁴⁶Gd is well known and identical to a corresponding isomer in ¹⁴⁷Gd with the exception of an extra $h_{9/2}$ neutron [9]. For further N = 83 isomers calculations within the deformed independent particle model (DIPM) showed that those configurations differ from ¹⁴⁷Gd only by their number of $d_{5/2}$ proton holes [2]. It is quite suggestive to construct the configurations of the N = 82 isomers by taking the configuration of the ¹⁴⁶Gd isomer and adding to or removing from it a suitable number of $d_{5/2}$ proton holes (see Table 1).

In addition DIPM calculations associated a $43/2^{-}$ state in ¹⁴⁷Tb with a configuration which is in conformity with our proposed systematics [10]. Nevertheless, model calculations have to be carried out in order to give well-founded configuration assignments. Moreover, there is a need for further experimental information on these isomers, such as definite parities and g factors.

The authors from Cologne are grateful to all the members of the NBI for their kind hospitality, and we thank M. Piiparinen for a fruitful discussion. This work was partially supported by the DFG under project number Br 799/8-1 and the Danish Natural Science Research Council.

References

- 1. Døssing, T. et al., Phys. Rev. Lett. 39, 1395 (1977)
- 2. Odahara, A. et al., Nucl. Phys. A620, 363 (1997)
- 3. Jessen, K. et al., Z. Phys. A357, 245 (1997)
- 4. Broda, K. et al., KFA Jülich, IKP Ann. Rep., 50 (1979)
- Schumacher, C. et al., Z. Phys. A351, 39 (1995); Schumacher, C., PhD Thesis, Universität zu Köln (1997)
- Andrejtscheff, W. et al., Nucl. Inst. Methods 204, 123 (1982)
- Ott, E., PhD Thesis, Universität zu Köln (1993); Ott, E. et al., Z. Phys. A348, 57 (1994)
- Piiparinen, M. et al., Z. Phys. A356, 111 (1996); Piiparinen, M., private communication (1997)
- 9. Neergård, K. et al., Phys. Lett. **99B**(3), 191 (1981)
- 10. Méliani, Z. et al., J. Phys. G20 L7 (1994)